Hydralazine rescues PC12 cells from acrolein-mediated death.

نویسندگان

  • Peishan Liu-Snyder
  • Richard Ben Borgens
  • Riyi Shi
چکیده

Acrolein, a major lipid peroxidation product, has been associated with both CNS trauma and neurodegenerative diseases. Because of its long half-life, acrolein is a potent endogenous toxin capable of killing healthy cells during the secondary injury process. Traditionally, attempts to intervene in the process of progressive cell death after the primary injury have included scavenging reactive oxygen species (so-called free radicals). The animal data supporting such an approach have generally been positive, but all human clinical trials attempting a similar outcome in human CNS injury have failed. New drugs that might reduce toxicity by scavenging the products of lipid peroxidation present a promising, and little investigated, therapeutic approach. Hydralazine, a well-known treatment for hypertension, has been reported to react with acrolein, forming hydrazone in cell-free systems. In the companion paper, we have established an acrolein-mediated cell injury model using PC12 cells in vitro. Here we test the hypothesis that the formation of hydrazone adducts with acrolein is able to reduce acrolein toxicity and spare a significant percentage of the population of PC12 cells from death. Concentrations of approximately 1 mM of this aldehyde scavenger can rescue over 80% of the population of PC12 cells. This study provides a basis for a new pharmacological treatment to reduce the effects of secondary injury in the damaged and/or diseased nervous system. In particular, we describe the need for new drugs that possess aldehyde scavenging properties but do not interfere with the regulation of blood pressure.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hydralazine inhibits compression and acrolein-mediated injuries in ex vivo spinal cord.

We have previously shown that acrolein, a lipid peroxidation byproduct, is significantly increased following spinal cord injury in vivo, and that exposure to neuronal cells results in oxidative stress, mitochondrial dysfunction, increased membrane permeability, impaired axonal conductivity, and eventually cell death. Acrolein thus may be a key player in the pathogenesis of spinal cord injury, w...

متن کامل

Strong protein adduct trapping accompanies abolition of acrolein-mediated hepatotoxicity by hydralazine in mice.

Acrolein is a highly reactive alpha,beta-unsaturated aldehyde that readily alkylates nucleophilic centers in cell macromolecules. Typically, such reactions proceed via Michael addition chemistry, forming adducts that retain an electrophilic carbonyl group. Since these species participate in secondary deleterious reactions, we hypothesize that inactivation of carbonyl adducts may attenuate acrol...

متن کامل

Hydralazine inhibits rapid acrolein-induced protein oligomerization: role of aldehyde scavenging and adduct trapping in cross-link blocking and cytoprotection.

Hydralazine strongly suppresses the toxicity of acrolein, a reactive aldehyde that contributes to numerous health disorders. At least two mechanisms may underlie the cytoprotection, both of which involve the nucleophilic hydrazine possessed by hydralazine. Under the simplest scenario, hydralazine directly scavenges free acrolein, decreasing intracellular acrolein availability and thereby suppre...

متن کامل

Chaperone heat shock protein 90 mobilization and hydralazine cytoprotection against acrolein-induced carbonyl stress.

Toxic carbonyls such as acrolein participate in many degenerative diseases. Although the nucleophilic vasodilatory drug hydralazine readily traps such species under "test-tube" conditions, whether these reactions adequately explain its efficacy in animal models of carbonyl-mediated disease is uncertain. We have previously shown that hydralazine attacks carbonyl-adducted proteins in an "adduct-t...

متن کامل

Chitosan nanoparticle-based neuronal membrane sealing and neuroprotection following acrolein-induced cell injury

BACKGROUND The highly reactive aldehyde acrolein is a very potent endogenous toxin with a long half-life. Acrolein is produced within cells after insult, and is a central player in slow and progressive "secondary injury" cascades. Indeed, acrolein-biomolecule complexes formed by cross-linking with proteins and DNA are associated with a number of pathologies, especially central nervous system (C...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of neuroscience research

دوره 84 1  شماره 

صفحات  -

تاریخ انتشار 2006